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Abstract 

A mathematical model of Ebola virus disease was formulated, it was shown that the model was well- posed, both disease 
and endemic equilibria for the models were obtained. The models were analysed for stability and it was established that 
the disease free equilibrium of model is locally asymptotically stable whenever the basic reproduction number is less 
than unity. Similarly, there exist endemic point when the basic reproduction numbers of Ebola virus disease is greater 
than unity. The results obtained so far from sensitivity analysis strongly shows that the spread of Ebola virus disease in 
the population depend on effective contact rate. Conclusively, in the numerical simulation where Runge –Kutta method 
of order four via MAPPLE (18) software was adopoted it shows that the best way to control the Ebola virus disease in 
the population is to minimize the contact rate. 

Keywords: Ebola virus disease; Boundedness of solutions; Basic reproduction number; Existence of endemic 
equilibrium point; Sensitivity indices 

1. Introduction

Ebola is a deadly virus that attacks healthy cells and replicates itself in a host’s body. The virus, previously known as 
Ebola hemorrhagic fever, is the deadliest pathogen for humans which affected several African countries. [1-10] 
performed numerical simulation and sensitivity analysis on a mathematical model of Ebola transmission to determine 
the biological significance of key model parameters in relation to disease transmissions and prevalence. Result from 
sensitivity analysis affirm that average contacts and transmission rates championed the disease outbreaks. Similarly, a 
model with multi-intervention strategies was proved to effectively reduce the contact and prevalence of Ebola virus 
disease than the models with one intervention at a time. They suggests that strategies targeting contact reduction (such 
as education and isolation) and those that focus on recovery rates (such as prompt treatment of the infected persons) 
can be successful in curtailing the Ebola epidemic but they did not consider Ebola-malaria co-infections.[9-19] proposed 
a mathematical model of Ebola virus (EBOV) using susceptible exposed infected recovered (SEIR) model, their model, 
the population is affected by animals, EBOV is an infectious agent causing hemorrhagic fever, a severe infectious disease 
characterized by high fever and bleeding, in humans and some monkeys. The conditions to investigate all possible 
equilibria of the model in terms of the basic reproduction number (local and global stability) was calculated. [4] 
formulated a compartmental model of susceptible, exposed, undetected, detected and recovered model to study the 
dynamical spread of Ebola virus disease which conclude that the rate of public enlightenment and availability of 
isolation centers can reduce the spread of Ebola virus disease. [10-20] considered a deterministic model of Ebola virus 
disease incorporating contact tracing and quarantine as interventions. The model was analysed for the existence and 
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stability of disease free equilibrium and endemic equilibrium points and numerical simulations were carried out to 
examine the impact of contact tracing and quarantine measures on the transmission dynamics of Ebola virus disease, 
the result indicates that Ebola virus disease could be eliminated faster when contact tracing and quarantine measures 
were implemented together.[13-17]developed a susceptible-exposed-infected-treatment (SEIT) model of Ebola virus 
transmission. They assumed that some treated individuals will die of the disease while some will recover and loose 
immunity. [3-19] formulated a susceptible infected-recovered-death model to study the spread of Ebola virus disease 
transmission in Sub-Saharan African countries. It was assumed that recovered individuals lost immunity and become 
susceptible again with natural death in susceptible infected recovered (SIR) compartments. [1-2, 20] worked on 
mathematical analysis of effects of isolation on Ebola transmission dynamics, it shows that if the detection rate of 
infected undetected individuals is sufficiently large, then the isolation technique can lead to elimination of Ebola in the 
population, this work is modified by adding the treated class into their model and performed the stability analysis and 
sensitivity indices on formulated model. 

2. Descriptions of Mathematical Model of Ebola Virus Disease 

A mathematical model is proposed to consider the dynamics spread of Ebola virus disease The human population is 

divided into six classes, susceptible individuals )(tSH
, Ebola virus disease latently infected individuals )(tLE

, Ebola virus 

disease infected undetected Individuals )(tIU
, infected detected Ebola virus disease individuals )(tI D , individuals under 

treatment for Ebola virus disease )(tIT
, individuals isolated for Ebola virus disease J . 

 Therefore the total population of human denoted 

)()()()()()()( tJtItItItLtStN TDUEHH          (1) 

It assumed that susceptible humans are recruited into the population at the constant rate H , it acquires Ebola virus 

diseases infection following the effective contact with infected undetected, infected detected, infected treated and 
isolated individual. The population increases by fraction of isolated individual who move to susceptible after test 
negative of Ebola virus disease infection but natural death occurs in all human (at the rate ), which decreases the 

population. The force of infection associated with Ebola virus disease, denoted by; 








 


H

JTTDDU

EE
N

JIII 
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where 
E  represents the effective contact rate, 

D is modification parameter comparing the individual transmissibility 

of detected infected individuals in relationship to latently infected. Since detected individuals are under treatment and 

isolation, it is intuitive to assume that 1D . Similarly 
T  and J are modification parameters comparing the 

transmissibility of infected individuals in the treated class and isolated class respectively. Putting these assumptions 
together, the model is given as; 


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where
E  is the force of infection,  is natural death rate,  is the rate of certified Ebola free,   is the discharge rate, 

E  is progression rate, 
1  is isolation rate, 

1  fraction of detection rate, UE  is the detection rate,   is the disease 

death rate, 
1  is the treatment rate and 

1  is fraction of individual with low immunity. 

2.1 Boundedness Solutions of Ebola Virus Disease 

For the Ebola virus disease transmission model (3) to be epidemiologically meaningful, it is important to prove that all 

solutions with nonnegative initial data will remain nonnegative for all time t . 

Theorem 1. 

 If )0(HS , )0(EL , )0(UI , )0(DI  , )0(TI  and )0(J  are non-negative, then the solutions 
HS , 

EL , 
UI , 

DI , 
TI  and J

of the Ebola virus disease model (3) are non-negative for all 0t . 

Proof:  

Consider the biologically-feasible region,


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


 H

HTDUEH NJIIILS :),,,,,( 6
, it will be proved that   

is positively invariant.  

The total population of Ebola virus disease transmission of sub-model is obtained by adding all the model equation (9) 
is given by; 

 JIIN
dt

dN
jDDEUUEHH

H         (4) 

In the absence of mortality due to Ebola virus disease, equation (4) become 

HH
H N

dt

dN
           (5) 

Solve (5) and re-arrange, upon taking the limit as t  obtain, 

0



Comprehensive Research and Reviews in Multidisciplinary Studies, 2022, 01(01), 001–016 

4 

   

   



































JJjIL
dt

dJ

II
dt

dI

IIL
dt

dI

ILS
dt

dI

JILS
dt

dL

JSS
dt

dS

DE

TD

T

UUEDDEEE

D

UUEUEEEHE

U

TEEHE

E

HHEH

H













)(

)(

1

1

)1()(

21

21

211

11

211

      (3) 

where
E  is the force of infection,  is natural death rate,  is the rate of certified Ebola free,   is the discharge rate, 

E  is progression rate, 
1  is isolation rate, 

1  fraction of detection rate, UE  is the detection rate,   is the disease 

death rate, 
1  is the treatment rate and 

1  is fraction of individual with low immunity. 

2.2 Boundedness Solutions of Ebola Virus Disease 

For the Ebola virus disease transmission model (3) to be epidemiologically meaningful, it is important to prove that all 

solutions with nonnegative initial data will remain nonnegative for all time t . 

Theorem 1. 

 If )0(HS , )0(EL , )0(UI , )0(DI  , )0(TI  and )0(J  are non-negative, then the solutions 
HS , 

EL , 
UI , 

DI , 
TI  and J

of the Ebola virus disease model (3) are non-negative for all 0t . 

Proof:  

Consider the biologically-feasible region,
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The total population of Ebola virus disease transmission of sub-model is obtained by adding all the model equation (9) 
is given by; 

 JIIN
dt

dN
jDDEUUEHH

H         (4) 

In the absence of mortality due to Ebola virus disease, equation (4) become 

HH
H N

dt

dN
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Solve (5) and re-arrange, upon taking the limit as t  obtain, 
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The reproduction number for Ebola virus disease is given as
ER , where denotes the spectral radius of the dominant 

eigenvalue of the next generation matrix. Therefore, this measure the average number of new infectious generated by a 
single infectious individual in a population consisting of susceptible. 

2.3 Local Stability of Disease Free of Ebola Virus Disease 

Theorem 2. Disease free equilibrium point is locally asymptotically stable if 1ER  and unstable if 1ER . Then the 

theorem implies the disease can be eliminated from the community. 

Proof: To prove local stability of disease free equilibrium, obtain the Jacobian matrix of the system (3) at disease free 
equilibrium. 

 

For simplicity 

11   EK ,
UEUEK  2

,
213   DEK ,   24K ,   jK5  

Therefore, the eigenvalue of the Jacobian matrix are the solution of the characteristic equation 0 IJ   

 Expand along the first column obtain 
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   1 , or 

 

 

Again expand along second column obtain 

 

))1( 12   EK  

 

UE
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The characteristics polynomial of the above matrix is given by; 
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2
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5  BBBBBB          (7) 

where; 

15 B , 

135424 KKKKKB   

3313221413 aCqbKbqqB UE  
 

 

 

The Routh Hurwitz criterion will be applied to determine the nature of the roots of the polynomial, which state that the 
roots of the polynomial will be negative if the coefficient 

 
iB (where i=0, 1, 2,…,5) are all positive and that the Hurwitz matrices are greater than zero. The coefficient ,05 B

,04 B  ,03 B ,02 B 01 B . 

Also, the Hurwitz matrices are as follow: 
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Now, that all determinants of the Hurwitz matrices are positive, then all the eigenvalues of the Jacobian matrix have 

negative real roots when 1ER , therefore, the disease free equilibrium is locally asymptotically stable. 
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2.4 Existence of Endemic Equilibrium Point of Ebola Virus Disease 

Here we consider the possible existence and stability of endemic (positive) equilibria of the model (3) (that is, a case, 
where equilibria of one of the infected components of the model is non-zero) will be explored. 

Let ),,,,,( ************

1 JIIILSE TDUEH


represents any arbitrary endemic equilibrium of model (3) so that

************** JIIILSN TDUEHH  . Solve (3) at steady state obtain ************** JIIILSN TDUEHH   
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Recall that the force of infection E , defined in (3) can be expressed at endemic steady state as  
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For computational simplicity (8) can be re-write in terms of 
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Now, substituting the above expression into (10) gives, 
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The components of 
1E can be obtained by substituting the unique value of

**

E , obtain in (12) into the expression in (3), 

then the result is established. 

Lemma 1 The model (3) has a unique endemic (positive) equilibrium, given by
1E , whenever 1ER . 

2.5 Sensitivity Analysis of Model Parameters for Ebola Virus Disease 

Sensitivity analysis was carried out to determine the model robustness to parameter 
values. This helps us to identify the parameters that have a significant to the basic reproduction number 

ER . Also, 

Sensitivity indices helps in developing efficient and effective intervention strategies in the control of Ebola virus disease 
in the community. This is calculated using normalized forward sensitivity method, which is defined as the ratio of the 

relative change in 
ER to the relative change in the parameter “P”: 

E

ER

P
R

P

P

R
E 




 .  

Table 1 Sensitivity values of basic reproduction number
ER  of Ebola virus disease model 

Parameters Sensitivity indices 

E  1.0000000000 

2  0.5252281866 

  0.1580601091 

  0.1272806385 

D  0.009595059744 

E  0.003178326922 

  0.0005554843456 

1  0.002846541946 

UE  0.0003910511435 

1  0.0001295977841 

2  0.00004396024358 

1  -0.2704057438 

1  -0.0001999572217 

T  -0.0002006352752 

J  -0.000002002101128 

UE  0 

DE  0 

j  0 

3. Numerical Simulation 

The analytical results of this study are illustrated by carrying out numerical simulations using parameter values in 

Table 2 with initial values 12000)0( HS , 2000)0( EL , 200)0( UI , 300)0( DI , 350)0( TI , 180)0( J

. The simulations are carried out with the help of MAPLE 18 software and the results are given below 
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 Table 2 Parameters values used for the numerical simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Values Sources 

H  1800 Estimated 

  0.2 Estimated 

1  0.3143 [2,20] 

1  0.92 [19, 20] 

UE  0.2 [2] 

E  
0.2 [1] 

2  0.6 [1-2] 

1  0.712 [1-2] 

E  0.8 Estimated 

1  0.2 [2,20 

2  0.02 [1-2] 

  0.8 [20] 

UE  0.01 Estimated 

DE  0.008 [1,20] 

j  0.06 Estimated 

T ,
D , J  0.01 Estimated 



Comprehensive Research and Reviews in Multidisciplinary Studies, 2022, 01(01), 001–016 

11 

 

Figure 1 Graph shows DFE point at different time 

 

Figure 2 Graph shows global stability of EE point at different time 
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Figure 3 Graph shows global stability of EE point at different time 

 

 

Figure 4 Chart of sensitivity indices on basic reproduction number 

 

 

Figure 5 Represents the initial behavior of the Ebola virus disease model 
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Figure 6 Graph of increasing the most positive sensitive index value which is contact rate on Ebola virus disease 
model 

 

 

Figure 7 Graph of reducing the most positive sensitive index value which is contact rate from Ebola virus disease 
model 

 

Figure 8 Graph of increasing the most second positive sensitive index value which is isolation rate on Ebola virus 
disease model 
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Figure 9 Graph of eliminating the most positive sensitive index value (contact rate) and increasing the most second 
sensitive value index (isolation rate) on Ebola virus disease model 

 

Figure 10 Graph of decreasing the sensitive index value contact rate and isolation rate and their effect on 
reproduction number  

4. Results  

Figure 1 depicts the disease-free equilibrium point of the Ebola virus disease, demonstrating that while latent, infected 
identified, infected undetected, infected treated, and isolated individuals die out, there is always a susceptible 
population as a whole. According to Figure 2, the system will converge to the same point at a maximum of 120 infected 
detected classes after 149 days, regardless of the beginning values. Figure 2 illustrates the global stability of endemic 
equilibrium point of infected detected person. Figure 3 depicts the global stability of the infected undiscovered 
individual endemic equilibrium point, which illustrates that regardless of the initial values, the system also converges 
after 149 days to the same position at a maximum of 165 infected undetected classes. The chart of sensitivity indices on 
the fundamental reproduction is shown in Figure 4. Figure 5 shows the initial behavior of the total population of the 
various Ebola virus classes. The susceptible population increases initially, then declines slightly due to the natural death 
rate and remains stable due to the percentage of infected isolated people who become susceptible after testing, while 
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the latently infected class decreases due to progression, isolation rate, and increases slightly due to discharge rate and 
treatment progression rate. Individuals' detection causes them to leave the class and join the discovered class, which 
diminishes the undetected class.  

The treated class later reduces as a result of therapy, which causes them to migrate from the undetected class, which 
initially increases due to the rapid detection of undiscovered individuals. Due to advancement and death rate, the 
treated class decreases. Due to contributions from latent and observed class isolation rates, the isolated class initially 
falls and then occasionally increases. As the contact rate increases, it starts to decline due to an increase in infection in 
the compartment (Figure 6), while the initial susceptible population increases to a peak of 6,700 at just 10 days. Latent, 
infected undetected, infected detected, infected treated, and isolated individuals increase and remain constant after 20 
days. Figure 7 when contact rate was abolished in the community, susceptible human grows to 8600 its highest at 11 
days and remain consistent as the day advances while latent population reduces a bit and remain constant as a result of 
persistence of virus in latent individual. However, the number of isolated, treated, and infected people remained the 
same throughout and did not significantly affect the compartment.  

Figure 8 shows that as the isolation rate rises, the susceptible population grows significantly while the latent and 
isolated populations also advance. However, the population has a very small number of infected who have been 
identified, undetected, and treated. Figure 9 shows the effects of reducing contact rates and raising isolation rates. The 
vulnerable human population reaches its peak without ever declining because there is no infection in the population, 
while other compartments do not actually exist.  

5. Conclusion 

In order to incorporate the treated of infected class into [2], a mathematical model was built in this work. The results of 
the research demonstrated that the model is correctly posed; both endemic and disease equilibria for the models were 

found. The fundamental Ebola virus disease reproduction number is 6870878144.0ER  obtained using the newest 

matrix technique. When the fundamental reproduction number is less than unity, the disease-free equilibrium of the 
model is locally asymptotically stable, according to the analysis of the models' stability. Similar to this, there are endemic 
areas where the Ebola virus disease's fundamental reproduction numbers are more than unity. The results of the 

sensitivity analysis thus far strongly suggest that the effective contact rate
E  is a key factor in the spread of the Ebola 

virus disease within the population. The elimination of contact rates is the greatest strategy to control the Ebola virus 
Disease in the population, according to the graphical results in Figure 9. The 3D plots of the inverse relationship between 
the fundamental reproduction number, contact rate, and isolation rate are shown in Figures 10 and 11. 
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